令和6年度終了 豆類振興事業助成金 (試験研究) の成果概要

- 1 課題名 京都アズキ遺伝資源の類縁関係の解明とミニコアコレクションの開発
- 2 研究実施者

研究代表者 船附 秀行 京都先端科学大学バイオ環境

学部 教授

分担 尾崎 耕二 京都府農林水産技術センター

農林センター栽培技術開発部

主任研究員(R5·6担当)

杉本 充 同 主任研究員(R4 担当)

- 3 実施期間 令和4年度~6年度(3年間)
- 4 試験研究の成果概要
- (1) 試験研究の目的

京都府農林水産技術センターでは、府内で栽培されていたアズキの品種を中心に、300点以上の系統(以下、「京都アズキ遺伝資源」と略す)を収集、保存している。これらの遺伝資源の維持はコスト、作業面での負担が大きい。そこで、京都アズキ遺伝資源の多様性を DNA レベルで評価し、最低限の数で最大の遺伝的変異を内包する集団、すなわちミニコアコレクションを構成する遺伝資源を選定することを目的とした。

(2) 実施計画、手法

遺伝的な多様性を直接評価するため、DNA 配列に着目し、系統間の多型(DNA 配列の相違)を調査し、解析した。また、過去のデータも含め、いくつかの形質を調査し比較した。

1) 京都アズキ遺伝資源の DNA 多型の検出

京都アズキ遺伝資源について、ゲノム全域にわたる DNA の多型を明らかにするため、京都以外の国内のアズキ遺伝資源や自ら亀岡市内で収集した在来品種 2 点も含め、次世代シーケンシング技術を活用した GRAS-Di 解析(図 1)を行い、遺伝資源間で見られる一塩基多型(SNP)や短い挿入欠失変異(InDel)を調査し、遺伝子型を同定した。

- 2) DNA 多型に基づく京都アズキ遺伝資源の類縁関係の解析
 - 1) で多型の見られた DNA 配列の遺伝子型に基づき、京都および国内のアズキ 遺伝資源について遺伝解析を行い、グルーピングを行った。令和4年では、グル

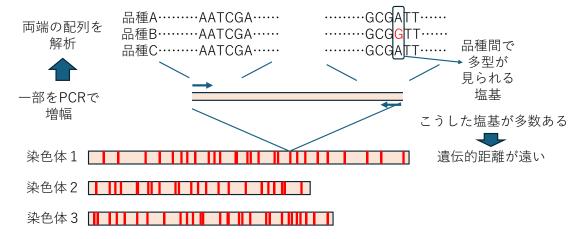


図1. GRAS-Di 法の原理. ゲノム中の多数の箇所を、ランダムプライマーを用いて PCR で増幅し、その断片の両端の 100-150 の DNA 配列を次世代シーケンサーで調べる方法. 例えば、図中の赤い箇所をそれぞれ増幅し、その両端の DNA 配列に品種・系統間で違いが見られれば、いわゆる DNA 多型が存在することになり、DNA マーカー化が可能. DNA (塩基) 配列の違いの寡少で系統間の遺伝的な距離が決定する.

ーピングのためには、遺伝解析ソフトウェアの DARWin6 を用い、系統樹を作成した。また、グループの代表となる系統を選定するため、コアコレクションを選定するための解析ソフトウェアの CoreHunter ならびに PowerCore を用いた。特に近縁と判断される遺伝資源については、ゲノム全体の DNA 配列の変異を確認し、統合できるか否かを判断した。

3) 遺伝資源の農業形質の再評価

過去のデータで変動がみられる遺伝資源や、2)の結果から DNA レベルで多様性が低いとみなされた遺伝資源について、莢色や種子色等の農業形質を調査し、再評価した。

- 4) 京都アズキ遺伝資源ミニコアコレクションの選定
 - 2) および3) の結果を統合して、京都アズキ遺伝資源の暫定ミニコアコレクションを選定した。さらに、暫定ミニコアコレクションを国内のアズキ栽培種のコアコレクションと比較し、多様性の評価を行った。

(3) 成果の概要

1) 京都アズキ遺伝資源の DNA 多型の検出

3年間の合計で、国内遺伝資源 79 点、京都の遺伝資源(自己収集遺伝資源を含む)330点を GRAS-Di 解析に供した。ヘテロ型が多く、純系になっていないと推定される遺伝資源や欠測値の多い遺伝資源を除き、最終的に国内の遺伝資源 77点、京都の遺伝資源 319点のデータを用い解析した。令和4年の試料では459か所、令和5年の試料では660か所、令和6年の試料では、712か所でDNA多型が

検出された。3か年とも共通して検出されたのは193か所であった。GRAS-Di解析は再現性が高いとされているが、今回の結果は必ずしもそうとはいえなかった。一方で、のべ1429か所のDNA 多型が明らかになり、これらは、京都の遺伝資源を用いた育種をする際、有用なDNA マーカーとなると考えられる。少数の京都アズキ遺伝資源にのみに多型が検出されたDNA 多型はあったが、全体として京都遺伝資源とその他の国内遺伝資源を区別するDNA 多型はなかった。

2) DNA 多型に基づく京都アズキ遺伝資源の類縁関係の解析

集団の構造化を調べるため、3年間共通で検出されたDNA 多型を用いて、遺伝解析ソフトウェア Structure を用いて解析を行ったところ、3つの構造化した集団があることが示唆された。さらに、遺伝解析ソフトウェア DARwin6 によりクラスター解析を行ったところ、極めて近縁の遺伝資源で構成されるグループが複数あることが明らかになった。特に、現在、京都府内で最も普及している「京都大納言」と遺伝子型が同じ可能性のある系統が104点あった(表1)。そのほか、亀岡市の著名な在来品種である「馬路大納言」と近縁な系統も39点存在した。近隣の在来品種「瑞穂大納言」や「丹波太鼓」もそれに含まれた。これらの整理により、大幅に保存点数を削減できる可能性が示された。一方で、他の遺伝資源とは少なくとも1つのDNA 多型を示した遺伝資源が86点あった。全体として今回検出されたDNA 多型で区別できるグループが114存在し、京都アズキ遺伝資源の多様性が示唆された(表1)。さらに、極めて近縁のグループを統合し、その代表をミニコアコレクション候補として、71系統を選定した。

表 1. DNA 多型に基づく京都アズキ遺伝資源のグループとその構成	長 1.	DNA 多型に基づ	く京都アス	(キ遺伝資源のク	「ルーフ	゚゚とその	構成遺伝資源数
------------------------------------	------	-----------	-------	----------	------	-------	---------

構成する遺伝資源数	グループ数	備考
100 以上	1	京都大納言を含むグループ
10~99	3	1つは、馬路大納言を含むグループ
5~10	2	
4	2	
3	3	
2	17	
1	86	
計	114	

3) 遺伝資源の農業形質の再評価

先行研究では長期にわたる調査のため、莢色と種皮色の基準が変動していた。 そこで、両形質の再調査を行った。 莢色は黄白色から暗褐色まで連続な変異だが、農林水産省の品種登録の審査基準で4種類あるとされるすべての色が京都の遺伝資源で観察された(図2)。同基準で種皮色は9色に分類されているが、そのうち、褐色以外の8色が確認された(図2)。これらも、京都アズキ遺伝資源の多様性の大きさを示唆するものと考えられた。

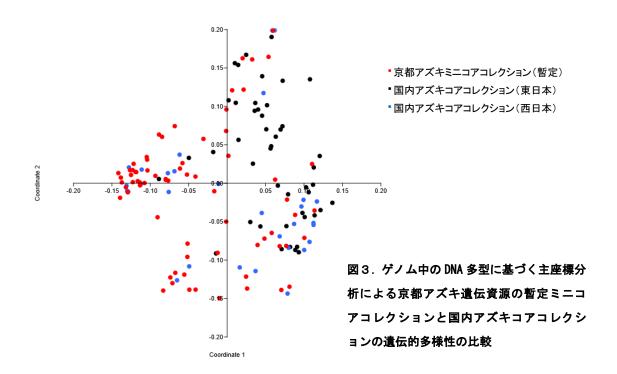


図2. 京都アズキ遺伝資源で観察された莢色(図上)と種皮色(図下)

また、ミニコアコレクション候補として選抜されたアズキ遺伝資源と同じグループと判定されながら、過去の調査データで形質の異なる系統について、2024年に栽培試験を行い、主要形質を確認した。調査したのは、ミニコアコレクション候補とそれが属する 26 のグループで、概要は以下のとおりであった。①26 の比較グループのうち、5 グループでは、同一グループ内の供試系統が概ね同様の特性を示した。②3 グループでは、同一グループ内の供試系統間で百粒重に差が認められたものの、他の特性は概ね同様を示した。③その他の18 グループでは、同一グループ内の供試系統間で開花期、熟莢色、種皮色の1項目以上について差が認められた。ただし、開花~登熟期に当たる9月の平均気温は26.8℃で平年比4.0℃高く、降水量は平年比14%と少なかった。高温・少雨の影響を受け、着莢数や一莢粒数が少なく粒肥大が不良となった系統が多かった。このため、量的形質については供試系統の本来の特性を示していない可能性があり、留意が必要であると考えられた。

4) 京都アズキ遺伝資源ミニコアコレクションの選定

以上の結果を総合的に勘案し、暫定のミニコアコレクションと種子維持系統を 選定したところ、ミニコアコレクション(暫定)76 系統、種子維持系統 116 系統 となった。 さらに、上記暫定ミニコアコレクションと国内アズキ栽培種のコアコレクション77点の相互の遺伝的距離をもとに、主座標分析を行った。第一基準と第二基準に関し、散布図を作成したところ(図3)、京都アズキミニコアコレクションの多くは第二基準に関し負側に分布するものが多かったものの、すべての象限に散在し、遺伝的多様性が高いことが示された。また、国内アズキコアコレクションが分布しない領域にも、京都アズキミニコアコレクションが分布しており、貴重な遺伝資源となることが示唆された。

(4) 今後の課題

本研究では、DNA 多型データを中心に機械的に暫定ミニコアコレクションの選定を行ったが、グループに品種が含まれたり、逆に入手先が不明な系統がミニコアコレクションになっていたりする場合は、ミニコアコレクションの構成遺伝資源を入れ替えるなど、改めてミニコアコレクションと種子維持系統を選定する必要がある。

(5) 成果の波及効果

今後、京都アズキ遺伝資源が新品種育成に効率的に活用されることで、画期的な品種の開発につながり、生産現場が活性化されることが期待される。また、面積は小さいながら現在も栽培されている在来品種の遺伝的類縁関係が解明されたので、実需が利用する際の参考となる。

(6) 論文、特許等

投稿論文を準備中。